Search results

1 – 1 of 1
Article
Publication date: 2 March 2012

Farhad Haghjoo, Esmaeel Khanahmadloo and S. Mohammad Shahrtash

The paper proposes and presents a comprehensive and integrated circuit model for investigating the behaviour of partial discharges occurring in voids inside the solid insulations…

Abstract

Purpose

The paper proposes and presents a comprehensive and integrated circuit model for investigating the behaviour of partial discharges occurring in voids inside the solid insulations of medium and high voltage cables.

Design/methodology/approach

The model is based on the well‐known three capacitors model, which is remarkably improved to handle physical parameters such as cavity size, position, shape and pressure, environmental parameters such as cable temperature, in addition to operational parameters such as the contributions of the avalanche of free electrons inside the cavity through considering stochastic time delays.

Findings

A complete, flexible and reliable model for partial discharges in voids inside the solid insulation of medium and high voltage cables is presented whose output agrees with experimental reported results.

Research limitations/implications

The proposed model deals only with single voids, and the semiconductor layers in the insulation of cables are not considered.

Practical implications

The model can be used in different physical, environmental and operational conditions in order to investigate the characteristics of partial discharge signals to be used as the bases for partial discharge detection and classification in power cables.

Originality/value

This paper presents a novel comprehensive and integrated circuit model with controlling functions to propose the behaviour of partial discharge occurring in voids inside the solid insulation of power cables. The model provides the contribution of geometrical parameters of the void, and operational conditions such as cable temperature and source frequency in partial discharge analysis.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 1 of 1